//########################################################################### // // FILE: DSP2833x_ECan.c // // TITLE: DSP2833x Enhanced CAN Initialization & Support Functions. // //########################################################################### // $TI Release: F2833x/F2823x Header Files and Peripheral Examples V142 $ // $Release Date: November 1, 2016 $ // $Copyright: Copyright (C) 2007-2016 Texas Instruments Incorporated - // http://www.ti.com/ ALL RIGHTS RESERVED $ //########################################################################### // // Included Files // #include "DSP2833x_Device.h" // DSP2833x Headerfile Include File #include "DSP2833x_Examples.h" // DSP2833x Examples Include File // // InitECan - This function initializes the eCAN module to a known state. // void InitECan(void) { InitECana(); #if DSP28_ECANB InitECanb(); #endif // if DSP28_ECANB } // // InitECana - Initialize eCAN-A module // void InitECana(void) { // // Create a shadow register structure for the CAN control registers. This // is needed, since only 32-bit access is allowed to these registers. // 16-bit access to these registers could potentially corrupt the register // contents or return false data. This is especially true while writing // to/reading from a bit (or group of bits) among bits 16 - 31 // struct ECAN_REGS ECanaShadow; EALLOW; // EALLOW enables access to protected bits // // Configure eCAN RX and TX pins for CAN operation using eCAN regs // ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all; ECanaShadow.CANTIOC.bit.TXFUNC = 1; ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all; ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all; ECanaShadow.CANRIOC.bit.RXFUNC = 1; ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all; // // Configure eCAN for HECC mode - (reqd to access mailboxes 16 thru 31) // HECC mode also enables time-stamping feature // ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.SCB = 1; ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; // // Initialize all bits of 'Master Control Field' to zero // Some bits of MSGCTRL register come up in an unknown state. For proper // operation, all bits (including reserved bits) of MSGCTRL must be // initialized to zero // ECanaMboxes.MBOX0.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX1.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX2.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX3.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX4.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX5.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX6.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX7.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX8.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX9.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX10.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX11.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX12.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX13.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX14.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX15.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX16.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX17.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX18.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX19.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX20.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX21.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX22.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX23.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX24.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX25.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX26.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX27.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX28.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX29.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX30.MSGCTRL.all = 0x00000000; ECanaMboxes.MBOX31.MSGCTRL.all = 0x00000000; // // TAn, RMPn, GIFn bits are all zero upon reset and are cleared again // as a matter of precaution. // ECanaRegs.CANTA.all = 0xFFFFFFFF; // Clear all TAn bits ECanaRegs.CANRMP.all = 0xFFFFFFFF; // Clear all RMPn bits ECanaRegs.CANGIF0.all = 0xFFFFFFFF; // Clear all interrupt flag bits ECanaRegs.CANGIF1.all = 0xFFFFFFFF; // // Configure bit timing parameters for eCANA // ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.CCR = 1 ; // Set CCR = 1 ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; ECanaShadow.CANES.all = ECanaRegs.CANES.all; do { ECanaShadow.CANES.all = ECanaRegs.CANES.all; } while(ECanaShadow.CANES.bit.CCE != 1 ); // Wait for CCE bit to be set ECanaShadow.CANBTC.all = 0; // // CPU_FRQ_150MHz is defined in DSP2833x_Examples.h // #if (CPU_FRQ_150MHZ) // // The following block for all 150 MHz SYSCLKOUT // (75 MHz CAN clock) - default. Bit rate = 1 Mbps See Note at End of File // ECanaShadow.CANBTC.bit.BRPREG = 4; ECanaShadow.CANBTC.bit.TSEG2REG = 2; ECanaShadow.CANBTC.bit.TSEG1REG = 10; #endif // // CPU_FRQ_100MHz is defined in DSP2833x_Examples.h // #if (CPU_FRQ_100MHZ) // // The following block is only for 100 MHz SYSCLKOUT (50 MHz CAN clock). // Bit rate = 1 Mbps See Note at End of File // ECanaShadow.CANBTC.bit.BRPREG = 4; ECanaShadow.CANBTC.bit.TSEG2REG = 1; ECanaShadow.CANBTC.bit.TSEG1REG = 6; #endif ECanaShadow.CANBTC.bit.SAM = 1; ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all; ECanaShadow.CANMC.all = ECanaRegs.CANMC.all; ECanaShadow.CANMC.bit.CCR = 0 ; // Set CCR = 0 ECanaRegs.CANMC.all = ECanaShadow.CANMC.all; ECanaShadow.CANES.all = ECanaRegs.CANES.all; do { ECanaShadow.CANES.all = ECanaRegs.CANES.all; } while(ECanaShadow.CANES.bit.CCE != 0 );// Wait for CCE bit to be cleared // // Disable all Mailboxes // ECanaRegs.CANME.all = 0; // Required before writing the MSGIDs EDIS; } #if (DSP28_ECANB) // // Initialize eCAN-B module // void InitECanb(void) { // // Create a shadow register structure for the CAN control registers. This // is needed, since only 32-bit access is allowed to these registers. // 16-bit access to these registers could potentially corrupt the register // contents or return false data. This is especially true while writing // to/reading from a bit (or group of bits) among bits 16 - 31 // struct ECAN_REGS ECanbShadow; EALLOW; // EALLOW enables access to protected bits // // Configure eCAN RX and TX pins for CAN operation using eCAN regs // ECanbShadow.CANTIOC.all = ECanbRegs.CANTIOC.all; ECanbShadow.CANTIOC.bit.TXFUNC = 1; ECanbRegs.CANTIOC.all = ECanbShadow.CANTIOC.all; ECanbShadow.CANRIOC.all = ECanbRegs.CANRIOC.all; ECanbShadow.CANRIOC.bit.RXFUNC = 1; ECanbRegs.CANRIOC.all = ECanbShadow.CANRIOC.all; // // Configure eCAN for HECC mode - (read to access mailboxes 16 thru 31) // ECanbShadow.CANMC.all = ECanbRegs.CANMC.all; ECanbShadow.CANMC.bit.SCB = 1; ECanbRegs.CANMC.all = ECanbShadow.CANMC.all; // // Initialize all bits of 'Master Control Field' to zero // Some bits of MSGCTRL register come up in an unknown state. For proper // operation, all bits (including reserved bits) of MSGCTRL must be // initialized to zero // ECanbMboxes.MBOX0.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX1.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX2.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX3.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX4.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX5.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX6.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX7.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX8.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX9.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX10.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX11.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX12.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX13.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX14.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX15.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX16.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX17.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX18.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX19.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX20.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX21.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX22.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX23.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX24.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX25.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX26.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX27.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX28.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX29.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX30.MSGCTRL.all = 0x00000000; ECanbMboxes.MBOX31.MSGCTRL.all = 0x00000000; // // TAn, RMPn, GIFn bits are all zero upon reset and are cleared again // as a matter of precaution. // ECanbRegs.CANTA.all = 0xFFFFFFFF; // Clear all TAn bits ECanbRegs.CANRMP.all = 0xFFFFFFFF; // Clear all RMPn bits ECanbRegs.CANGIF0.all = 0xFFFFFFFF; // Clear all interrupt flag bits ECanbRegs.CANGIF1.all = 0xFFFFFFFF; // // Configure bit timing parameters for eCANB // ECanbShadow.CANMC.all = ECanbRegs.CANMC.all; ECanbShadow.CANMC.bit.CCR = 1 ; // Set CCR = 1 ECanbRegs.CANMC.all = ECanbShadow.CANMC.all; ECanbShadow.CANES.all = ECanbRegs.CANES.all; do { ECanbShadow.CANES.all = ECanbRegs.CANES.all; } while(ECanbShadow.CANES.bit.CCE != 1); // Wait for CCE bit to be cleared ECanbShadow.CANBTC.all = 0; // // CPU_FRQ_150MHz is defined in DSP2833x_Examples.h // #if (CPU_FRQ_150MHZ) // // The following block for all 150 MHz SYSCLKOUT // (75 MHz CAN clock) - default. Bit rate = 1 Mbps See Note at end of file // ECanbShadow.CANBTC.bit.BRPREG = 4; ECanbShadow.CANBTC.bit.TSEG2REG = 2; ECanbShadow.CANBTC.bit.TSEG1REG = 10; #endif // // CPU_FRQ_100MHz is defined in DSP2833x_Examples.h // #if (CPU_FRQ_100MHZ) // // The following block is only for 100 MHz SYSCLKOUT (50 MHz CAN clock). // Bit rate = 1 Mbps See Note at end of file // ECanbShadow.CANBTC.bit.BRPREG = 4; ECanbShadow.CANBTC.bit.TSEG2REG = 1; ECanbShadow.CANBTC.bit.TSEG1REG = 6; #endif ECanbShadow.CANBTC.bit.SAM = 1; ECanbRegs.CANBTC.all = ECanbShadow.CANBTC.all; ECanbShadow.CANMC.all = ECanbRegs.CANMC.all; ECanbShadow.CANMC.bit.CCR = 0 ; // Set CCR = 0 ECanbRegs.CANMC.all = ECanbShadow.CANMC.all; ECanbShadow.CANES.all = ECanbRegs.CANES.all; do { ECanbShadow.CANES.all = ECanbRegs.CANES.all; } while(ECanbShadow.CANES.bit.CCE != 0 );// Wait for CCE bit to be cleared // // Disable all Mailboxes // ECanbRegs.CANME.all = 0; // Required before writing the MSGIDs EDIS; } #endif // if DSP28_ECANB // // InitECanGpio - This function initializes GPIO pins to function as eCAN pins // // Each GPIO pin can be configured as a GPIO pin or up to 3 different // peripheral functional pins. By default all pins come up as GPIO // inputs after reset. // // Caution: // Only one GPIO pin should be enabled for CANTXA/B operation. // Only one GPIO pin shoudl be enabled for CANRXA/B operation. // Comment out other unwanted lines. // void InitECanGpio(void) { InitECanaGpio(); #if (DSP28_ECANB) InitECanbGpio(); #endif // if DSP28_ECANB } // // InitECanaGpio - This function initializes GPIO pins to function as eCAN- A // void InitECanaGpio(void) { EALLOW; // // Enable internal pull-up for the selected CAN pins // Pull-ups can be enabled or disabled by the user. // This will enable the pullups for the specified pins. // Comment out other unwanted lines. // // GpioCtrlRegs.GPAPUD.bit.GPIO30 = 0; // Enable pull-up for GPIO30 (CANRXA) GpioCtrlRegs.GPAPUD.bit.GPIO18 = 0; // Enable pull-up for GPIO18 (CANRXA) // GpioCtrlRegs.GPAPUD.bit.GPIO31 = 0; //Enable pull-up for GPIO31 (CANTXA) GpioCtrlRegs.GPAPUD.bit.GPIO19 = 0; //Enable pull-up for GPIO19 (CANTXA) // // Set qualification for selected CAN pins to asynch only // Inputs are synchronized to SYSCLKOUT by default. // This will select asynch (no qualification) for the selected pins. // // GpioCtrlRegs.GPAQSEL2.bit.GPIO30 = 3; // Asynch qual for GPIO30 (CANRXA) GpioCtrlRegs.GPAQSEL2.bit.GPIO18 = 3; // Asynch qual for GPIO18 (CANRXA) // // Configure eCAN-A pins using GPIO regs // This specifies which of the possible GPIO pins will be eCAN functional // pins. // // GpioCtrlRegs.GPAMUX2.bit.GPIO30 = 1; // Configure GPIO30 for CANRXA GpioCtrlRegs.GPAMUX2.bit.GPIO18 = 3; // Configure GPIO18 for CANRXA // GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 1; // Configure GPIO31 for CANTXA GpioCtrlRegs.GPAMUX2.bit.GPIO19 = 3; // Configure GPIO19 for CANTXA EDIS; } #if (DSP28_ECANB) // // InitECanbGpio - This function initializes GPIO pins to function as eCAN-B // void InitECanbGpio(void) { EALLOW; // // Enable internal pull-up for the selected CAN pins // Pull-ups can be enabled or disabled by the user. // This will enable the pullups for the specified pins. // Comment out other unwanted lines. // // GpioCtrlRegs.GPAPUD.bit.GPIO8 = 0; //Enable pull-up for GPIO8 (CANTXB) //GpioCtrlRegs.GPAPUD.bit.GPIO12 = 0; //Enable pull-up for GPIO12(CANTXB) //GpioCtrlRegs.GPAPUD.bit.GPIO16 = 0; //Enable pull-up for GPIO16(CANTXB) GpioCtrlRegs.GPAPUD.bit.GPIO20 = 0; //Enable pull-up for GPIO20(CANTXB) // GpioCtrlRegs.GPAPUD.bit.GPIO10 = 0; // Enable pull-up for GPIO10(CANRXB) //GpioCtrlRegs.GPAPUD.bit.GPIO13 = 0; // Enable pull-up for GPIO13(CANRXB) //GpioCtrlRegs.GPAPUD.bit.GPIO17 = 0; // Enable pull-up for GPIO17(CANRXB) GpioCtrlRegs.GPAPUD.bit.GPIO21 = 0; // Enable pull-up for GPIO21(CANRXB) // // Set qualification for selected CAN pins to asynch only // Inputs are synchronized to SYSCLKOUT by default. // This will select asynch (no qualification) for the selected pins. // Comment out other unwanted lines. // // GpioCtrlRegs.GPAQSEL1.bit.GPIO10 = 3; // Asynch qual for GPIO10 (CANRXB) //GpioCtrlRegs.GPAQSEL1.bit.GPIO13 = 3; // Asynch qual for GPIO13 (CANRXB) //GpioCtrlRegs.GPAQSEL2.bit.GPIO17 = 3; // Asynch qual for GPIO17 (CANRXB) GpioCtrlRegs.GPAQSEL2.bit.GPIO21 = 3; // Asynch qual for GPIO21 (CANRXB) // // Configure eCAN-B pins using GPIO regs // This specifies which of the possible GPIO pins will be eCAN functional // pins. // // GpioCtrlRegs.GPAMUX1.bit.GPIO8 = 2; // Configure GPIO8 for CANTXB //GpioCtrlRegs.GPAMUX1.bit.GPIO12 = 2; // Configure GPIO12 for CANTXB //GpioCtrlRegs.GPAMUX2.bit.GPIO16 = 2; // Configure GPIO16 for CANTXB GpioCtrlRegs.GPAMUX2.bit.GPIO20 = 3; // Configure GPIO20 for CANTXB // GpioCtrlRegs.GPAMUX1.bit.GPIO10 = 2; // Configure GPIO10 for CANRXB //GpioCtrlRegs.GPAMUX1.bit.GPIO13 = 2; // Configure GPIO13 for CANRXB //GpioCtrlRegs.GPAMUX2.bit.GPIO17 = 2; // Configure GPIO17 for CANRXB GpioCtrlRegs.GPAMUX2.bit.GPIO21 = 3; // Configure GPIO21 for CANRXB EDIS; } #endif // if DSP28_ECANB // // Note: Bit timing parameters must be chosen based on the network parameters // such as the sampling point desired and the propagation delay of the network. // The propagation delay is a function of length of the cable, delay introduced // by the transceivers and opto/galvanic-isolators (if any). // // The parameters used in this file must be changed taking into account the // above mentioned factors in order to arrive at the bit-timing parameters // suitable for a network. // // // End of File //